Allosteric Activation of DegS, a Stress Sensor PDZ Protease
نویسندگان
چکیده
Regulated intramembrane proteolysis is a method for transducing signals between cellular compartments. When protein folding is compromised in the periplasm of E. coli, the C termini of outer-membrane proteins (OMPs) bind to the PDZ domains of the trimeric DegS protease and activate cleavage of RseA, a transmembrane transcriptional regulator. We show here that DegS is an allosteric enzyme. OMP binding shifts the equilibrium from a nonfunctional state, in which the active sites are unreactive, to the functional proteolytic conformation. Crystallographic, biochemical, and mutagenic experiments show that the unliganded PDZ domains are inhibitory and suggest that OMP binding per se is sufficient to stabilize the relaxed conformation and activate DegS. OMP-induced activation and RseA binding are both positively cooperative, allowing switch-like behavior of the OMP-DegS-RseA system. Residues involved in the DegS allosteric switch are conserved in the DegP/HtrA and HtrA2/Omi families, suggesting that many PDZ proteases use a common mechanism of allosteric activation.
منابع مشابه
OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism.
In the E. coli periplasm, C-terminal peptides of misfolded outer-membrane porins (OMPs) bind to the PDZ domains of the trimeric DegS protease, triggering cleavage of a transmembrane regulator and transcriptional activation of stress genes. We show that an active-site DegS mutation partially bypasses the requirement for peptide activation and acts synergistically with mutations that disrupt cont...
متن کاملAllosteric Activation of a Bacterial Stress Sensor
In Gram-negative bacteria, envelope stress signals such as unfolded outer membrane proteins (OMP) activate the periplasmic protease DegS. This protease then triggers a cellular pathway to alleviate the stress. Now Sohn et al. (2007) show conclusively that inhibition of DegS is relieved allosterically by binding of the C-terminal sequences in unfolded OMPs to the PDZ domain of DegS.
متن کاملAllosteric regulation of DegS protease subunits though a shared energy landscape
The PDZ domains of the trimeric DegS protease bind unassembled outer-membrane proteins (OMPs) that accumulate in the Escherichia coli periplasm. This cooperative binding reaction triggers a proteolytic cascade that activates a transcriptional stress response. To dissect the mechanism of allosteric activation, we generated hybrid DegS trimers with different numbers of PDZ domains and/or protease...
متن کاملSteric clashes with bound OMP peptides activate the DegS stress-response protease.
Escherichia coli senses envelope stress using a signaling cascade initiated when DegS cleaves a transmembrane inhibitor of a transcriptional activator for response genes. Each subunit of the DegS trimer contains a protease domain and a PDZ domain. During stress, unassembled outer-membrane proteins (OMPs) accumulate in the periplasm and their C-terminal peptides activate DegS by binding to its P...
متن کاملOMP peptides modulate the activity of DegS protease by differential binding to active and inactive conformations.
Upon sensing misfolded outer-membrane porins (OMPs) in the periplasm, the E. coli DegS protease cleaves RseA, a transmembrane regulator, transmitting a signal to activate cytoplasmic gene expression. Misfolding is detected by binding of normally inaccessible OMP sequences to the DegS-PDZ domain, which relieves allosteric inhibition and activates proteolysis. Here we show that DegS stimulation c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 131 شماره
صفحات -
تاریخ انتشار 2007